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Thermal Conductivity and Heat Capacity of
Synthetic Fuel Components'

S. F. Voss? and E. D. Sloan®

As part of a group contribution study on the liquid thermal conductivity of
synthetic fuel components, experiments were performed to study the effects of
dimethyl- and ethyl-group additions to cyclohexane. A transient hot-wire
apparatus was used to measure the thermal conductivity of these three fluids
between ambient pressure and 104 MPa over a temperature range of 300 to
460 K. Thermal conductivities measured with this instrument have been
assigned an accuracy of +2% based upon a standard deviation comparison
with a toluene standard established by Nieto de Castro etal. (1986). The
thermal conductivities and excess thermal conductivities of the naphthenes
investigated have been successfully linearized by plotting the data versus
reduced density exponentiated to the power of five. By using data previously
reported by Perkins (1983) and Li etal. (1984), this linear reduced density
method is demonstrated for methyl, dimethyl, and ethyl additions to
cyclohexane, as well as methyl and dimethyl additions to benzene. The
naphthenes have been shown to have similar intercepts, with slope changes
dependent upon the functional group attached to cyclohexane. The aromatics
have a less pronounced slope change with additional functional groups attached
to the benzene base. This instrument was also used to determine heat capacities,
via the thermal diffusivity, to within +10%.

KEY WORDS: aromatics; heat capacity; naphthenes; transient hot-wire
method; thermal conductivity; toluene.

1. INTRODUCTION

Oil shale’and coal liquefaction products will eventually play a large role in
supplying this nation’s energy demand. In the event that another oil crisis
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should develop, the partial transition to alternate fuels must be as swift as
possible. To accomplish this goal, an accurate thermophysical data base
must be upgraded at the present time [1]. The goal of the present work is
to contribute to this data base.

A survey of the existing thermal conductivity data shows that a good
portion is 15 or more years old. Unfortunately, much of the older data
were measured by methods that were plagued with convection and radia-
tion. These effects, unless corrected, cause the data to be artificially high (as
much as 20%, or more in some instances). For example, the accepted value
for the thermal conductivity of toluene at 20°C has decreased from
approximately 150 mW -m~'-K~! in the 1920s to the current value of
1311 mW . -m~!-K~' [2]. High thermal conductivities lead to over-
estimated heat transfer coefficients, which in turn, lead to underestimated
heat transfer surface areas. This underestimation will undoubtedly diminish
a process design’s safety factor or rated optimal efficiency.

With the exception of the many possible heteromolecules that are
common components in coal liquefaction, four common types of molecules
encountered in various stages of processing oil and coal liquids are
paraffins (alkanes and branched alkanes), olefins (alkenes and cyclo-
alkenes), naphthenes (cycloalkanes), and aromatics.

Of the four classes of molecules mentioned, the paraffinic group has
the most reported thermophysical data. The majority of the olefin thermal
conductivity data has been taken at low temperatures (less than 50°C) due
to the thermal instability of this molecular type. Problems with obtaining
the desired chemical purity of the common cycloalkenes eliminated them
from further study in this work. Any measurement of cycloalkenes at higher
temperatures and pressures runs the risk of some degree of polymerization.

Some of the most common molecular base structures encountered in
coal liquefaction and crude processing are six-member rings. The six-
member naphthene ring is cyclohexane, and the six-member aromatic ring
is benzene. Petroleum crudes from certain areas (California in particular)
are rich in cycloalkanes (naphthenes) [3]. These are in turn, converted to
high-octane aromatics by catalytic reforming.

The fluids chosen for this work were cyclohexane, cis-1,2-
dimethylcyclohexane, and ethylcyclohexane. Data for these compounds
were used along with methylcyclohexane data by Perkins [4] to show the
effect on the thermal conductivity associated with the addition of methyl,
dimethyl, and ethyl groups to cyclohexane. A similar analysis was made for
methyl and dimethyl additions to benzene using reported experimental
data by Perkins [4] and Lietal. [5].
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2. EXPERIMENTAL APPARATUS

The instrument used to measure the thermal conductivity was a single-
wire transient hot-wire apparatus described previously [6, 7]. The thermal
conductivity data measured with this equipment were assigned an uncer-
tainty of +2% based upon a standard deviation comparison with the
toluene thermal conductivity standard established by Nieto de Castro et al.
[2].

The system was also used to measure the density within 2% by
measuring volumetric changes in a closed system from a condition of
known density [8]. A calibrated piston pressure generator is used to
measure any change in the system volume. A mass balance can be applied
to determine the fluid density at temperatures and pressures other than
ambient. The governing mass balance equations are given by Voss [9]. All
densities reported in this work compared within 1% with those calculated
using a corresponding-states computer program (TRAPP) which is
estimated at having an average absolute error of 8% [10].

Thermal diffusivitics were also determined to within +7% using the
zero-time intercept of a AT vs In(¢) plot, where AT is the temperature
rise of the transient hot wire in K and ¢ is the experimental time in s. By
applying the definition of the thermal diffusivity, the heat capacity was
determined as

Co=— (1)

where A is the thermal conductivity, « is the thermal diffusivity, and p is the
fluid density.

Due to the high degree of uncertainty associated with a thermal dif-
fusivity determination, the heat capacity determination has been assigned
an uncertainty of +10%. This accuracy cannot compete with calorimetric
data but can be used for process design purposes if no other data are
available for the fluid or conditions of interest. All pressures measured
during this work were determined within 0.015 MPa and temperatures
within 1°C.

3. RESULTS

Tables I through III show the experimental results for the three
naphtenes investigated over the course of this work. The ideal-gas thermal
conductivity (A°) has been estimated using a corresponding-states com-
puter program (TRAPP) [10] which has an average absolute error of 8%.
The thermal conductivity of cis-1,2-dimethylcyclohexane is plotted versus
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Fig. 1. Thermal conductivity of cis-1,2-dimethylcyclo-
hexane.

temperature for the isobars of 0.4, 3.5, 7.0, and 9.7 MPa in Fig. 1. The
thermal conductivity plotted by this method yields a distinct curve for each
isobar. Figure 1 is typical of the thermal conductivity data plots for the
fluids investigated in this work.

4. REDUCED DENSITY METHOD

It was shown by Voss [9] that the experimentally measured
naphthene thermal conductivity data were linearized by plotting them
bersus reduced density to the power of five (p?), where the reduced density
is the fluid density divided by the fluid critical density. This method
linearized the liquid thermal conductivity data over the temperature and
pressure ranges investigated to reduced densities as low as 2.0 and to
pressures as high as 10.4 MPa. The naphthene thermal conductivities have
been put into a form of

A=ap’+c (2)

where 4 is the experimentally measured liquid thermal conductivity. For
this equation, A as well as @ and ¢ have units of mW -m~'-K % It was
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Table IV. Naphthene Coefficients for Eq. (2)

Compound and source of data a ¢

Cyclohexane [8] 0.308 60.0
Methylcyclohexane [4] 0.215 61.9
cis-1,2 Dimethylcyclohexane [ 8] 0.149 56.5
Ethylcyclohexane [ 8] 0.155 56.9

also shown that reduced density exponents between 4.0 and 6.0 linearized
the data. The exponent of 5.0 was used to be consistent throughout this
work. The naphthene coefficients for Eq. (2) are given in Table IV.

From a corresponding-states standpoint, the thermal conductivity can
be divided into several parts and correlated as a function of the PVT
properties of a system [11]. In its simplest form, the excess thermal
conductivity is given as

2—=1°=f(p) (3)

The ideal-gas thermal conductivity is subtracted since it is a function of
temperature only [12].

Naphthene excess thermal conductivities have been determined using
the following data sources: cyclohexane experimental data by Voss [9] and
Li etal. [5], methylcyclohexane data by Perkins [4], and cis-1,2-
dimethylcyclohexane and ethylcyclohexane data by Voss [9]. The
naphthene excess thermal conductivities are plotted versus p; in Fig. 2. The
excess thermal conductivities for the naphthenes are linearized for each
fluid and can be easily put into the form

A—22=mp’+b (4)

The naphthene coefficients for Eq. (4) are given in Table V. The units of A,
4%, m, and b are all mW-m~'-K . The data in Table V and Fig.2
indicate that the naphthenes investigated have been linearized with slopes
changing as a function of the group attached to the cyclohexane base.
We believe that the slope changes associated with the various group
additions (in Fig.2) are due to an increase in the molecular internal
degrees of freedom. For a given energy input to an individual molecule,
increased internal degrees of freedom give the molecule greater ability to
store heat within itself (in the form of rotational and vibrational energies),
decreasing the energy available as translational energy, since energy is
conserved. Therefore, a decrease in the translational energy will decrease
the amount of energy transferred to neighboring molecules resulting in a
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Fig. 2. Naphthene excess thermal conductivities plot-
ted by the reduced-density method.

1037

decrease in the thermal conductivity. This result will be amplified as the
density is increased since the number of neighboring molecules that can be

affected increases.

This method has been extended to aromatics using experimental ben-
zene data reported by Li et al. [5], toluene and m-xylene data reported by
Perkins [4], and predicted densities and ideal-gas thermal conductivities
using TRAPP [10]. The aromatic excess thermal conductivities, plotted
versus p” in Fig. 3 are also linearized by this method. The aromatic coef-
ficients for Eq. (4) are given in Table VI. Unlike the naphthenes, the slopes

Table V. Naphthene Coefficients for Eq. (4)

Compound and source of data m b

Cyclohexane [5, 8] 0.441 26.6
Methylcyclohexane [4] 0.362 218
cis-1,2 Dimethylcyclohexane [8 ] 0.230 21.6
Ethylcyclohexane [8] 0.235 224
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Fig. 3. Aromatic excess thermal conductivities plotted
by the reduced-density method.

of aromatics do not change significantly with additional groups attached to
the benzene ring. The intercepts also vary between benzene and the others.
We believe that the small aromatic slope change with functional-group
additions is due to the fact that the changes in the molecular internal
degrees of freedom is much smaller with functional-group additions to an
aromatic base than with an equivalent addition to a naphthene base. The
aromatic coefficients for Eq. (2) are also given in Table VII. Benzene data
by Li et al. [5] are not included in Table VII since Eq. (2) fails to linearize
the thermal conductivity data above 10 15 MPa.

Overall, this method of reducing the data has been shown to be very
consistent within experimental errors for the naphthenes and aromatics

Table VI. Aromatic Coefficients for Eq. (4)

Compound and source of data m b
Benzene [5] 0.386 54.1
Toluene [4] 0.377 36.8

m-Xylene [4] 0.360 331
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Table VII. Aromatic Coefficients for Eq. (2)

Compound and source of data a ¢
Toluene [4] 0.264 70.8
m-Xylene [4] 0.241 70.2

investigated. It effectively linearizes the thermal conductivity data for
temperatures between room temperature and near the critical point as well
as for pressures between ambient and 0.33 GPa.

5. CONCLUSIONS AND RECOMMENDATIONS

A method has been presented which has been demonstrated to
linecarize both the excess and the experimental thermal conductivity data
for the naphthenes and aromatics investigated over a significant portion
of the entire liquid region within experimental errors. The extension of
this method to other families of molecules to propose a correlation is a
promising subject for further research.
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